The Utility of the Ozone Monitoring Instrument (OMI) HCHO & NO₂ in Air Quality Decision-Making Activities

B. Duncan¹, Y. Yoshida¹, J. Olson², S. Sillman³, R. Martin⁴, L. Lamsal⁴, Y. Hu⁵, K. Pickering¹, C. Retscher¹, D. Allen⁶, J. Crawford²

¹NASA Goddard Space Flight Center ²NASA Langley Research Center ³Univ. of Michigan ⁴Dalhousie Univ. ⁵Georgia Institute of Technology ⁶Univ. of Maryland, College Park

October 26, 2010, A-Train Symposium, New Orleans

Aura provides information on 5/6 of EPA's Criteria Pollutants.

AEROSOL

measure of PM2.5.

OMI = Total Column Measurement Pollutant Distributions in the Vertical

There is currently little information on "nose-level ozone", but we do have information on ozone precursors!

OMI OMI
$$\begin{array}{ccc}
NO_{2} & HCHO \\
\downarrow & \downarrow \\
NO_{X} + VOCs \xrightarrow{hv} Ozone
\end{array}$$

HCHO is an oxidation product of most VOCs, so it can serve as a proxy for VOCs.

$NO_x + VOCs \xrightarrow{hy} O_3 : Decrease NO_x or VOCs?$

OMI HCHO/NO₂ as an Indicator of the Instantaneous Ozone Production Rate (PO₃)

OMI OMI *Based on Sillman [1995] NO₂ HCHO *Martin et al. [2004]
$$\downarrow \qquad \downarrow \qquad \qquad \downarrow$$
 NO_x + VOCs \xrightarrow{hv} Ozone

- If HCHO/NO₂ is low, reduce anthropogenic VOCs.
- If HCHO/NO₂ is high, reduce NO_x.

NOTE 1: HCHO/NO₂ gives info on the sensitivity of PO₃, not the ozone concentration!

NOTE 2: HCHO/NO₂ = FNR = Formaldehyde to NO₂ Ratio

"Weight of Evidence" Evaluation

- "Weight of Evidence" = data and model results that show that an emission control plan is reducing/will reduce ozone to meet the air quality standard within a certain time.
- ⇒ A trend in the FNR may indicate that an emission control strategy is effective or not.
- ⇒ The observed FNRs may also be used to define new emission control strategies as the photochemical environments of a region evolve over time.

OMI FNR: Beijing, China Olympics

- 7-day running average.
- 1°x1° horizontal box over metropolitan area.

Figure courtesy of Jacquie Witte.

OMI FNR: August 2006

OMI captures gradient from downtown to suburbs to rural areas!

"Proof-of-Concept" Study CMAQ Simulation: Southern California

How does the Instantaneous O₃ Production Rate (PO₃) vary with the PBL FNR, [HCHO], & [NO₂]?

Tropospheric column needs to represent PBL:

Used model columns where >70% of NO₂ and HCHO tropospheric columns in PBL.

Defining the Transition Regime

NO_x-Limited Regime

High loss of HO_x (L_{HOx}) (i.e., formation of peroxides = radical sink).

VOC-Limited Regime

High loss of NO_x (L_{NOx}) (i.e., formation of $HNO_3 = NO_x$ sink)

 \therefore L_{HOx}/L_{NOx} = 1 is transition between regimes!

Does this definition of the transition regime apply to other cities too?????

How does the FNR vary throughout the day?

- Ozone production can occur under 1, 2 or all 3 photochemical regimes!
- OMI is limited by 1 overpass during daytime.
- Geostationary (e.g., GEO-CAPE) is better for AQ!

How does the OMI FNR vary throughout the week?

Summer average (JJA 2005-2007) of metropolitan areas.

Weekend vs weekday effect.

The LA metropolitan area:

- transition regime weekdays.
- NO_x-limited on weekends.

Sunday has highest FNR.

Variability Associated with NO_x Emissions *June-August OMI NO*₂: 2007-2005

Point sources 10% lower in 2007 due to NO_x Budget Trading Program of EPA.

Automobile emissions decreased due to Tier 2 Vehicle and Gasoline Sulfur Program.

Variability Associated with NO_x Emissions

The FNR is increasing as NO_x emissions decrease. Therefore, PO_3 is becoming more NO_x -limited.

OMI Formaldehyde

Isoprene, a natural VOC, plays an important role in the formation of unhealthy levels of ozone.

Isoprene is emitted from trees.

HCHO is a product of isoprene oxidation, so variation of HCHO can serve as a proxy for variation of isoprene.

Isoprene emissions increase with temperature.

Variability Associated with Isoprene

Isoprene emissions and, subsequently, HCHO increase with temperature.

Therefore, FNR should increase with temperature.

We know that the frequency of high O_3 events increase with temperature.

Therefore, ozone formation should be more NO_x-limited during high ozone events.

But, NO_x emissions decreasing!

Conclusions of "Proof-of-Concept" Study

- ☐ The OMI FNR appears to be a credible air quality indicator and is consistent with *in situ* observations.
- ☐ The fine horizontal resolution of OMI allows us to see the gradient in the FNR from urban to suburban to rural areas.
- ☐ Assuming that our CMAQ results for southern California apply to the entire U.S., the OMI FNR indicates:
- Ozone production became more NO_x-limited over the U.S. from 2005-2007 because of substantial NO_x emission reductions.
- Ozone production should be more NO_x-limited during heat waves in regions with high biogenic emissions.

The Impact of the 2005 Gulf Hurricanes as Seen by OMI NO₂

Hurricanes Katrina and Rita caused a significant reduction in NO₂ emissions from oil and gas production facilities as well as power plants.

OMI FNR: August 2006

